Full Text

Turn on search term navigation

© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Soil moisture is a key component of the water cycle budget. Sensing soil moisture using microwave sensors onboard satellites is an effective way to retrieve surface soil moisture (SSM) at a global scale, but the retrieval accuracy in some regions is inadequate due to the complicated factors influencing the general retrieval process. On the other hand, monitoring soil moisture directly through in-situ devices is capable of providing high-accuracy SSM measurements, but the distribution of such stations is sparse. Recently, the Global Navigation Satellite System interferometric Reflectometry (GNSS-R) method was used to derive field-scale SSM, which can serve as a supplement to contemporary sparse in-situ soil moisture networks. On this basis, it is of great research significance to explore the fusion of these different kinds of SSM data, so as to improve the present satellite SSM products with regard to their data accuracy. In this paper, a multi-source point-surface fusion method based on the generalized regression neural network (GRNN) model is applied to fuse the Soil Moisture Active Passive (SMAP) Level 3 radiometer SSM daily product with in-situ measured and GNSS-R estimated SSM data from five soil moisture networks in the western continental U.S. The results show that the GRNN model obtains a fairly good performance, with a cross-validation R value of approximately 0.9 and a ubRMSE of 0.044 cm3 cm−3. Furthermore, the fused SSM product agrees well with the site-specific SSM data in terms of time and space, which demonstrates that the proposed GRNN model is able to construct the non-linear relationship between the point- and surface-scale SSM.

Details

Title
Quality Improvement of Satellite Soil Moisture Products by Fusing with In-Situ Measurements and GNSS-R Estimates in the Western Continental U.S.
Author
Xu, Hongzhang; Yuan, Qiangqiang; Li, Tongwen; Shen, Huanfeng; Zhang, Liangpei; Jiang, Hongtao
Publication year
2018
Publication date
Sep 2018
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2126869163
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.