Abstract

Generative adversarial network (GAN) is one of the most promising methods for unsupervised learning in recent years. GAN works via adversarial training concept and has shown excellent performance in the fields image synthesis, image super-resolution, video generation, image translation, etc. Compared with classical algorithms, quantum algorithms have their unique advantages in dealing with complex tasks, quantum machine learning (QML) is one of the most promising quantum algorithms with the rapid development of quantum technology. Specifically, Quantum generative adversarial network (QGAN) has shown the potential exponential quantum speedups in terms of performance. Meanwhile, QGAN also exhibits some problems, such as barren plateaus, unstable gradient, model collapse, absent complete scientific evaluation system, etc. How to improve the theory of QGAN and apply it that have attracted some researcher. In this paper, we comprehensively and deeply review recently proposed GAN and QAGN models and their applications, and we discuss the existing problems and future research trends of QGAN.

Details

Title
Quantum Generative Adversarial Network: A Survey
Author
Li, Tong; Zhang, Shibin; Xia, Jinyue
Pages
401-438
Section
ARTICLE
Publication year
2020
Publication date
2020
Publisher
Tech Science Press
ISSN
1546-2218
e-ISSN
1546-2226
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2408353311
Copyright
© 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.