[A & I plus PDF only]
COPYRIGHT: © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Atmospheric Chemistry and Physics 2010
Abstract
In the context of rising greenhouse gas concentrations, and the potential feedbacks between climate and the carbon cycle, there is an urgent need to monitor the exchanges of carbon between the atmosphere and both the ocean and the land surfaces. In the so-called top-down approach, the surface fluxes of CO2 are inverted from the observed spatial and temporal concentration gradients. The concentrations of CO2 are measured in-situ at a number of surface stations unevenly distributed over the Earth while several satellite missions may be used to provide a dense and better-distributed set of observations to complement this network. In this paper, we compare the ability of different CO2 concentration observing systems to constrain surface fluxes. The various systems are based on realistic scenarios of sampling and precision for satellite and in-situ measurements.
It is shown that satellite measurements based on the differential absorption technique (such as those of SCIAMACHY, GOSAT or OCO) provide more information than the thermal infrared observations (such as those of AIRS or IASI). The OCO observations will provide significantly better information than those of GOSAT. A CO2 monitoring mission based on an active (lidar) technique could potentially provide an even better constraint. This constraint can also be realized with the very dense surface network that could be built with the same funding as that of the active satellite mission. Despite the large uncertainty reductions on the surface fluxes that may be expected from these various observing systems, these reductions are still insufficient to reach the highly demanding requirements for the monitoring of anthropogenic emissions of CO2 or the oceanic fluxes at a spatial scale smaller than that of oceanic basins. The scientific objective of these observing system should therefore focus on the fluxes linked to vegetation and land ecosystem dynamics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer