Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Low-field magnetic resonance imaging (MRI) has become increasingly popular due to cost reduction, artifact minimization, use for interventional radiology, and a better safety profile. The different applications of low-field systems are particularly wide (muscle–skeletal, cardiac, neuro, small animals, food science, as a hybrid scanner for hyperthermia, in interventional radiology and in radiotherapy). The low-field scanners produce lower signal-to-noise ratio (SNR) images with respect to medium- and high-field scanners. Thus, particular attention must be paid in the minimization of the radiofrequency (RF) coil losses compared to the sample noise. Following a short description of the coil design and simulation methods (magnetostatic and full-wave), in this paper we will describe how the choice of electrical parameters (such as conductor geometry and capacitor quality) affects the coil’s overall performance in terms of the quality factor Q, ratio between unloaded and loaded Q, and coil sensitivity. Subsequently, we will summarize the work carried out at our electromagnetic laboratory in collaboration with MR-manufacturing companies in the field of RF coil design, building, and testing for 0.18–0.55 T magnetic resonance (MR) clinical scanners by classifying them between surface-, volume-, and phased-array coils.

Details

Title
Radiofrequency Coils for Low-Field (0.18–0.55 T) Magnetic Resonance Scanners: Experience from a Research Lab–Manufacturing Companies Cooperation
Author
Giovannetti, Giulio 1   VIAFID ORCID Logo  ; Frijia, Francesca 2 ; Flori, Alessandra 2   VIAFID ORCID Logo 

 Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy 
 U.O.C Bioengineering and Clinical Technology, Fondazione G. Monasterio CNR—Regione Toscana, 56124 Pisa, Italy 
First page
4233
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756680831
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.