Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the rapid development of modern society, generated data has increased exponentially. Finding required data from this huge data pool is an urgent problem that needs to be solved. Hashing technology is widely used in similarity searches of large-scale data. Among them, the ranking-based hashing algorithm has been widely studied due to its accuracy and speed regarding the search results. At present, most ranking-based hashing algorithms construct loss functions by comparing the rank consistency of data in Euclidean and Hamming spaces. However, most of them have high time complexity and long training times, meaning they cannot meet requirements. In order to solve these problems, this paper introduces a distributed Spark framework and implements the ranking-based hashing algorithm in a parallel environment on multiple machines. The experimental results show that the Spark-RLSH (Ranking Listwise Supervision Hashing) can greatly reduce the training time and improve the training efficiency compared with other ranking-based hashing algorithms.

Details

Title
A Ranking-Based Hashing Algorithm Based on the Distributed Spark Platform
Author
Yang, Anbang; Qian, Jiangbo; Chen, Huahui; Dong, Yihong
First page
148
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20782489
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2376869119
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.