Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Pedestrian inertial navigation technology plays an important role in indoor positioning technology. However, low-cost inertial sensors in smart devices are affected by bias and noise, resulting in rapidly increasing and accumulating errors when integrating double acceleration to obtain displacement. The data-driven class of pedestrian inertial navigation algorithms can reduce sensor bias and noise in IMU data by learning motion-related features through deep neural networks. Inspired by the RoNIN algorithm, this paper proposes a data-driven class algorithm, RBCN-Net. Firstly, the algorithm adds NAM and CBAM attention modules to the residual network ResNet18 to enhance the learning ability of the network for channel and spatial features. Adding the BiLSTM module can enhance the network’s ability to learn over long distances. Secondly, we construct a dataset VOIMU containing IMU data and ground truth trajectories based on visual inertial odometry (total distance of 18.53 km and total time of 5.65 h). Finally, the present algorithm is compared with CNN, LSTM, ResNet18 and ResNet50 networks in VOIMU dataset for experiments. The experimental results show that the RMSE values of RBCN-Net are reduced by 6.906, 2.726, 1.495 and 0.677, respectively, compared with the above networks, proving that the algorithm effectively improves the accuracy of pedestrian navigation.

Details

Title
RBCN-Net: A Data-Driven Inertial Navigation Algorithm for Pedestrians
Author
Zhu, Yiqi 1 ; Zhang, Jinglin 2 ; Zhu, Yanping 2   VIAFID ORCID Logo  ; Zhang, Bin 2 ; Ma, Weize 2 

 School of Electrical and Information Engineering, Jiangsu University of Technology, Zhong Wu Road 1801#, Changzhou 213001, China 
 School of Microelectronics and Control Engineering, Changzhou University, Yanzheng West 2468#, Changzhou 213164, China 
First page
2969
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785183684
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.