Full Text

Turn on search term navigation

Copyright © 2016 Zhi Liu and Tefang Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Hydraulic power and other kinds of disturbance in a linear motor-direct drive actuator (LM-DDA) have a great impact on the performance of the system. A mathematical model of the LM-DDA system is established and a double-loop control system is presented. An extended state observer (ESO) with switched gain was utilized to estimate the influence of the hydraulic power and other load disturbances. Meanwhile, Radial Basis Function (RBF) neural network was utilized to optimize the parameters in this intelligent controller. The results of the dynamic tests demonstrate the performance with rapid response and improved accuracy could be attained by the proposed control scheme.

Details

Title
RBF Neural Network Control for Linear Motor-Direct Drive Actuator Based on an Extended State Observer
Author
Liu, Zhi; Chen, Tefang
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
10260226
e-ISSN
1607887X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1846088382
Copyright
Copyright © 2016 Zhi Liu and Tefang Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.