Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Pancreatic cancer remains the leading cause of cancer death globally. With no reliable early detection strategy and limited treatment options, up to 90% of patients will lose their lives to this disease. In this review, we bring together recent advances in understanding the pancreatic cancer tumor microenvironment, highlighting a protein that was recently discovered to potently attenuate pancreatic cancer progression by influencing its cross-talk with the microenvironment.

Abstract

Pancreatic cancer (PaC) is a highly aggressive disease, with poor response to current treatments and 5-year survival rates of 10–15%. PaC progression is facilitated by its interaction with the complex and multifaceted tumor microenvironment (TME). In the TME, cancer cells and surrounding stromal cells constantly communicate with each other via the secretion and uptake of factors including cytokines, chemokines, growth factors, metabolites, and extracellular vesicles (EVs), reshaping the landscape of PaC. Recent studies demonstrated that the metastasis suppressor N-myc downstream regulated 1 (NDRG1) not only inhibits oncogenic signaling pathways in PaC cells but also alters the communication between PaC cells and the surrounding stroma. In fact, NDRG1 was found to influence the secretome of PaC cells, alter cancer cell metabolism, and interfere with intracellular trafficking and intercellular communication between PaC cells and surrounding fibroblasts. This review will present recent advancements in understanding the role of NDRG1 in PaC progression, with a focus on how this molecule influences PaC-stroma communication and its potential for re-shaping the PaC TME.

Details

Title
Re-Shaping the Pancreatic Cancer Tumor Microenvironment: A New Role for the Metastasis Suppressor NDRG1
Author
Chang, Jiawei 1 ; Lo, Zoe H Y 2 ; Shafi Alenizi 2 ; Kovacevic, Zaklina 1 

 School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia; Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia 
 School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia 
First page
2779
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819407267
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.