Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Honokiol is a natural bisphenol neolignan present in the bark of Magnolia officinalis, whose extracts have been employed in oriental medicine to treat several disorders, showing a variety of biological properties, including antitumor activity, potentially related to radical scavenging. Six bisphenol neolignans with structural motifs related to the natural bioactive honokiol were synthesized. Their chain-breaking antioxidant activity was evaluated in the presence of peroxyl (ROO•) and hydroperoxyl (HOO•) radicals by both experimental and computational methods. Depending on the number and position of the hydroxyl and alkyl groups present on the molecules, these derivatives are more or less effective than the reference natural compound. The rate constant of the reaction with ROO• radicals for compound 7 is two orders of magnitude greater than that of honokiol. Moreover, for compounds displaying quinonic oxidized forms, we demonstrate that the addition of 1,4 cyclohexadiene, able to generate HOO• radicals, restores their antioxidant activity, because of the reducing capability of the HOO• radicals. The antioxidant activity of the oxidized compounds in combination with 1,4-cyclohexadiene is, in some cases, greater than that found for the starting compounds towards the peroxyl radicals. This synergy can be applied to maximize the performances of these new bisphenol neolignans.

Details

Title
Reaction with ROO• and HOO• Radicals of Honokiol-Related Neolignan Antioxidants
Author
Cardullo, Nunzio 1   VIAFID ORCID Logo  ; Monti, Filippo 2   VIAFID ORCID Logo  ; Muccilli, Vera 1   VIAFID ORCID Logo  ; Amorati, Riccardo 3   VIAFID ORCID Logo  ; Baschieri, Andrea 2   VIAFID ORCID Logo 

 Dipartimento di Scienze Chimiche, Università di Catania, V.le A. Doria 6, 95125 Catania, Italy 
 Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129 Bologna, Italy 
 Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via S. Giacomo 11, 40126 Bologna, Italy 
First page
735
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767272753
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.