Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cache side channel attacks extract secret information by monitoring the cache behavior of a victim. Normally, this attack targets an L3 cache, which is shared between a spy and a victim. Hence, a spy can obtain secret information without alerting the victim. To resist this attack, many detection techniques have been proposed. However, these approaches have limitations as they do not operate in real time. This article proposes a real-time detection method against cache side channel attacks. The proposed technique performs the detection of cache side channel attacks immediately after observing a variation of the CPU counters. For this, Intel PCM (Performance Counter Monitor) and machine learning algorithms are used to measure the value of the CPU counters. Throughout the experiment, several PCM counters recorded changes during the attack. From these observations, a detecting program was implemented by using these counters. The experimental results show that the proposed detection technique displays good performance for real-time detection in various environments.

Details

Title
Real-Time Detection for Cache Side Channel Attack using Performance Counter Monitor
Author
Cho, Jonghyeon 1   VIAFID ORCID Logo  ; Kim, Taehun 2 ; Kim, Soojin 2 ; Im, Miok 2 ; Kim, Taehyun 2 ; Shin, Youngjoo 2 

 Department of Computer Engineering, Kwangwoon University, Seoul 01897, Korea; [email protected] 
 School of Computer and Information Engineering, Kwangwoon University, Seoul 01897, Korea; [email protected] (T.K.); [email protected] (S.K.); [email protected] (M.I.); [email protected] (T.K.) 
First page
984
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2533920884
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.