Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Language resources are the main factor in speech-emotion-recognition (SER)-based deep learning models. Thai is a low-resource language that has a smaller data size than high-resource languages such as German. This paper describes the framework of using a pretrained-model-based front-end and back-end network to adapt feature spaces from the speech recognition domain to the speech emotion classification domain. It consists of two parts: a speech recognition front-end network and a speech emotion recognition back-end network. For speech recognition, Wav2Vec2 is the state-of-the-art for high-resource languages, while XLSR is used for low-resource languages. Wav2Vec2 and XLSR have proposed generalized end-to-end learning for speech understanding based on the speech recognition domain as feature space representations from feature encoding. This is one reason why our front-end network was selected as Wav2Vec2 and XLSR for the pretrained model. The pre-trained Wav2Vec2 and XLSR are used for front-end networks and fine-tuned for specific languages using the Common Voice 7.0 dataset. Then, feature vectors of the front-end network are input for back-end networks; this includes convolution time reduction (CTR) and linear mean encoding transformation (LMET). Experiments using two different datasets show that our proposed framework can outperform the baselines in terms of unweighted and weighted accuracies.

Details

Title
Real-Time End-to-End Speech Emotion Recognition with Cross-Domain Adaptation
Author
Wongpatikaseree, Konlakorn 1   VIAFID ORCID Logo  ; Singkul, Sattaya 2   VIAFID ORCID Logo  ; Hnoohom, Narit 1   VIAFID ORCID Logo  ; Yuenyong, Sumeth 1   VIAFID ORCID Logo 

 Department of Computer Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand; [email protected] (K.W.); [email protected] (N.H.) 
 Department of Deep Innovation, SpeeChance Lab, SpeeChance Co., Ltd., Bangkok 10510, Thailand; [email protected] 
First page
79
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
25042289
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716486779
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.