Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Soil moisture (SM) has significant impacts on the Earth’s energy and water cycle system. Remote sensing, such as the Soil Moisture Active Passive (SMAP) mission, has delivered valuable estimations of global surface soil moisture. However, it has a 2~3 days revisit time leading to gaps between SMAP areas. To achieve accurate and comprehensive real-time forecast of SM, we propose a spatial–temporal deep learning model based on the Convolutional Gated Recursive Units with Data Integration (DI_ConvGRU) to capture the spatial and temporal variation in SM simultaneously by modeling the influence of adjacent SM values in space and time. Experiments show that the DI_ConvGRU outperforms the ConvGRU with Linear Interpolation (interp_ConvGRU) and the Long Short-Term Memory with Data Integration (DI_LSTM). The best performance (Bias = 0.0132 m3/m3, ubRMSE = 0.022 m3/m3, R = 0.977) has been achieved through the use of spatial–temporal deep learning model and Data Integration term. In comparison with interp_ConvGRU and DI_LSTM, DI_ConvGRU has improved the model performance in 74.88% and 68.99% of the regions according to RMSE, respectively. The predictability of SM depends highly on SM memory characteristics. DI_ConvGRU can provide accurate spatial–temporal forecast for SM with missing data, making them potentially useful for applications such as filling observational gaps in satellite data.

Details

Title
Real-Time Forecast of SMAP L3 Soil Moisture Using Spatial–Temporal Deep Learning Model with Data Integration
Author
Zhang, Ye 1 ; Huang, Feini 1 ; Lu, Li 1 ; Li, Qinglian 2   VIAFID ORCID Logo  ; Zhang, Yongkun 1   VIAFID ORCID Logo  ; Shangguan, Wei 1   VIAFID ORCID Logo 

 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou 510275, China 
 College of Computer Science and Technology, Changchun Normal University, Changchun 130032, China 
First page
366
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767301687
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.