Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The key to autonomous navigation in unmanned systems is the ability to recognize static and moving objects in the environment and to support the task of predicting the future state of the environment, avoiding collisions, and planning. However, because the existing 3D LiDAR point-cloud moving object segmentation (MOS) convolutional neural network (CNN) models are very complex and have large computation burden, it is difficult to perform real-time processing on embedded platforms. In this paper, we propose a lightweight MOS network structure based on LiDAR point-cloud sequence range images with only 2.3 M parameters, which is 66% less than the state-of-the-art network. When running on RTX 3090 GPU, the processing time is 35.82 ms per frame and it achieves an intersection-over-union(IoU) score of 51.3% on the SemanticKITTI dataset. In addition, the proposed CNN successfully runs the FPGA platform using an NVDLA-like hardware architecture, and the system achieves efficient and accurate moving-object segmentation of LiDAR point clouds at a speed of 32 fps, meeting the real-time requirements of autonomous vehicles.

Details

Title
Real-Time LiDAR Point-Cloud Moving Object Segmentation for Autonomous Driving
Author
Xie, Xing 1 ; Wei, Haowen 2   VIAFID ORCID Logo  ; Yang, Yongjie 1   VIAFID ORCID Logo 

 School of Information Science and Technology, Nantong University, Nantong 226019, China 
 Department of Computer Science, Columbia University, New York, NY 10027, USA 
First page
547
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761207101
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.