Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As a non-metallic organic semiconductor photocatalyst, graphitic carbon nitride (g–C3N4, CN) has become a research hotspot due to its excellent performance in organic degradation, CO2 reduction and water splitting to produce hydrogen. However, the high recombination rate of electron-hole pairs, low specific surface area and weak light absorption of bulk CN synthesized by the traditional one-step thermal polymerization method seriously restrict its photocatalytic performance and practical application. To enhance the photocatalytic performance of CN, doping and surface modification strategies are usually employed to tune the band gap of carbon nitride and improve the separation of carriers. In this paper, the research progress of different methods to modify CN in recent years is introduced, and the mechanisms of improving the photocatalytic performance are mainly analyzed. Typical modification methods are mainly divided into metal doping, non-metal doping, co-doping and surface-functionalized modification. Some characterization methods that can analyze the doping state and surface modification are also discussed as examples. Finally, the difficulties that need to be addressed through modified CN photocatalysts and the directions for future research are pointed out.

Details

Title
Recent Advances of Doping and Surface Modifying Carbon Nitride with Characterization Techniques
Author
Chen, Jinbao 1 ; Fang, Shun 2 ; Shen, Qun 3 ; Fan, Jiajie 1 ; Li, Qin 2 ; Lv, Kangle 2   VIAFID ORCID Logo 

 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China 
 Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environment, South-Central Minzu University, Wuhan 430074, China 
 Hangzhou Inspection Institute of Quality and Technical Supervision, Hangzhou 310019, China 
First page
962
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716512398
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.