Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the age of artificial intelligence, the best approach to handling huge amounts of data is a tremendously motivating and hard problem. Among machine learning models, stochastic gradient descent (SGD) is not only simple but also very effective. This study provides a detailed analysis of contemporary state-of-the-art deep learning applications, such as natural language processing (NLP), visual data processing, and voice and audio processing. Following that, this study introduces several versions of SGD and its variant, which are already in the PyTorch optimizer, including SGD, Adagrad, adadelta, RMSprop, Adam, AdamW, and so on. Finally, we propose theoretical conditions under which these methods are applicable and discover that there is still a gap between theoretical conditions under which the algorithms converge and practical applications, and how to bridge this gap is a question for the future.

Details

Title
Recent Advances in Stochastic Gradient Descent in Deep Learning
Author
Tian, Yingjie 1 ; Zhang, Yuqi 2   VIAFID ORCID Logo  ; Zhang, Haibin 3 

 School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China; Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100190, China 
 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 
 Beijing Institute for Scientific and Engineering Computing, Faculty of Science, Beijing University of Technology, Beijing 100124, China 
First page
682
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774930008
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.