Full Text

Turn on search term navigation

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A new linear regression form is derived for a flux observer and a position observer is designed. In general, the observability of the permanent-magnet synchronous motor is lost at zero speed. In this work, the proposed regressor vector contains current derivative terms in both directions (dq-axis), and it gives the chance for the model-based flux observer to operate at zero speed. When an excitation signal is injected into d and q axes with the proposed flux observer, it helps to satisfy the persistent excitation condition in the low-speed range. Therefore, the sensorless performance of the model-based is improved greatly, even at zero speed. However, it appears with a disturbance term, which depends on the derivative of the d-axis current. Thus, the disturbance does not vanish when an excitation signal is injected. In this work, the disturbance term is also taken care of in constructing an observer. It results in an observer which allows signal injection. Thus, high frequency signal can be injected in the low speed region and turned off when it is unnecessary as the speed increases. This model-based approach utilizes the signal injection directly without recurring to a separate high frequency model. In other words, it provides a seamless transition without switching to the other algorithm. The validity is demonstrated by simulation and experimental results under various load conditions near zero speed.

Details

Title
Regression Model-Based Flux Observer for IPMSM Sensorless Control with Wide Speed Range
Author
Choi, Jongwon
First page
6249
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2580984373
Copyright
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.