Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Activation and enhancement of heat shock factor (HSF) pathways are important adaptive responses to heat stress in plants. The γ-aminobutyric acid (GABA) plays an important role in regulating heat tolerance, but it is unclear whether GABA-induced thermotolerance is associated with activation of HSF pathways in plants. In this study, the changes of endogenous GABA level affecting physiological responses and genes involved in HSF pathways were investigated in creeping bentgrass during heat stress. The increase in endogenous GABA content induced by exogenous application of GABA effectively alleviated heat damage, as reflected by higher leaf relative water content, cell membrane stability, photosynthesis, and lower oxidative damage. Contrarily, the inhibition of GABA accumulation by the application of GABA biosynthesis inhibitor further aggravated heat damage. Transcriptional analyses showed that exogenous GABA could significantly upregulate transcript levels of genes encoding heat shock factor HSFs (HSFA-6a, HSFA-2c, and HSFB-2b), heat shock proteins (HSP17.8, HSP26.7, HSP70, and HSP90.1-b1), and ascorbate peroxidase 3 (APX3), whereas the inhibition of GABA biosynthesis depressed these genes expression under heat stress. Our results indicate GABA regulates thermotolerance associated with activation and enhancement of HSF pathways in creeping bentgrass.

Details

Title
Regulation of Heat Shock Factor Pathways by γ-aminobutyric Acid (GABA) Associated with Thermotolerance of Creeping Bentgrass
Author
Peng, Yan; Zhang, Xinquan; Ma, Xiao; Huang, Linkai  VIAFID ORCID Logo  ; Liu, Wei; Nie, Gang; He, Liwen
First page
4713
Publication year
2019
Publication date
2019
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548600280
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.