It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The resistance distance between two vertices of a connected graph is defined as the net effective resistance between them when each edge of the graph is replaced by a resistor. In this paper, it is shown that the product of resistance distances between any pair of vertices in a simple graph and in its connected complement is less than or equal to 3. Meanwhile, a relation between resistance distances of a graph and its contraction is obtained in a special case.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer