Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, C- and N-co-doped ZnO photocatalysts were prepared through pyrolysis using metal–organic frameworks (MOFs) as precursor materials. The crystal structure, morphology, and surface chemical composition of the samples were characterised via X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Their activities in photocatalytic reactions were also evaluated through photocatalytic experiments. The results show that C-, N-co-doped ZnO has a high specific surface area, which is favourable for a photocatalytic reaction. Meanwhile, C-, N-doping can effectively modulate the energy band structure of ZnO, broaden its light absorption range, and improve the separation efficiency of photogenerated electron–hole pairs. The photocatalytic experiments show that the C/N-ZnO-500 samples, which have the optimal photocatalytic performances, have improved performances of 50% and 35%, respectively, compared with those of the blank control group and the ZIF-8 samples. The preparation of ZnO materials with a morphology change and doping using metal frameworks as precursors provides a new idea for designing efficient photocatalysts.

Details

Title
Study on the Photocatalytic Properties of Metal–Organic Framework-Derived C-, N-Co-Doped ZnO
Author
Fu, Su 1 ; Xi, Wenkui 1 ; Ren, Jinlong 2 ; Hangxin Wei 1 ; Sun, Wen 1 

 School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065, China; [email protected] (S.F.); 
 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China 
First page
855
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2931032700
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.