Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

A shortage of high-quality roughage jeopardises the Chinese mutton sheep industry. The development of new roughage resources is important to safeguard the health and welfare of the sheep, to save costs, increase efficiency and improve resource utilization. Mulberry leaves have high nutritional value and have been used in herbivore production for a long time in China. However, fresh mulberry leaves are not easy to preserve, and dried mulberry leaves readily lose nutrients in the conservation process. Ensiling mulberry leaves can reduce the anti-nutritional constituents, mainly phytic acid and tannin, while reducing any nutrient loss. In this study, mulberry silage replaced part of a maize silage-based diet for fattening Hu lambs. The effects of mulberry silage on the growth of the lambs, their gastrointestinal tissue morphology, rumen fermentation parameters and bacterial diversity were investigated. The results showed that using mulberry silage in place of 20–40% of the maize silage in the diet of Hu lambs promoted their growth, while maintaining satisfactory digestion.

Abstract

Maize silage has a significant environmental impact on livestock due to its high requirement for fertilizer and water. Mulberry has the potential to replace much of the large amount of maize silage grown in China, but its feeding value in the conserved form needs to be evaluated. We fed Hu lambs diets with 20–60% of the maize silage replaced by mulberry silage, adjusting the soybean meal content when increasing the mulberry silage inclusion rate in an attempt to balance the crude protein content of the diets. Mulberry silage had higher crude protein and lower acidic and neutral detergent fiber contents compared to maize silage. Replacing maize silage and soyabean meal with mulberry silage had no effect on the feed intake and growth rate of Hu lambs. However, the rumen pH increased, the acetate to propionate in rumen fluid increased, and the rumen ammonia concentration decreased as mulberry replaced maize silage and soyabean meal. This was associated with an increase in norank_f__F082 bacteria in the rumen. Rumen papillae were shorter when mulberry silage replaced maize silage, which may reflect the reduced neutral detergent fiber (NDF) content of the original silage. In conclusion, mulberry silage can successfully replace maize silage and soyabeans in the diet of Hu lambs without loss of production potential, which could have significant environmental benefits.

Details

Title
Replacement of Maize Silage and Soyabean Meal with Mulberry Silage in the Diet of Hu Lambs on Growth, Gastrointestinal Tissue Morphology, Rumen Fermentation Parameters and Microbial Diversity
Author
Han, Haoqi 1   VIAFID ORCID Logo  ; Zhang, Liyang 1 ; Shang, Yuan 1 ; Wang, Mingyan 1 ; Phillips, Clive J C 2   VIAFID ORCID Logo  ; Wang, Yao 1 ; Su, Chuanyou 1 ; Lian, Hongxia 1 ; Fu, Tong 1 ; Gao, Tengyun 1 

 Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; [email protected] (H.H.); [email protected] (L.Z.); [email protected] (Y.S.); [email protected] (M.W.); [email protected] (Y.W.); [email protected] (C.S.); [email protected] (T.G.) 
 Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; [email protected]; Curtin University Sustainable Policy (CUSP) Institute, Curtin University, Bentley 6102, Australia 
First page
1406
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2674316298
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.