Full Text

Turn on search term navigation

Copyright Copernicus GmbH 2017

Abstract

The terrestrial biosphere regulates climate through carbon, water, and energy exchanges with the atmosphere. Land-surface models estimate plant transpiration, which is actively regulated by stomatal pores, and provide projections essential for understanding Earth's carbon and water resources. Empirical evidence from 204 species suggests that significant amounts of water are lost through leaves at night, though land-surface models typically reduce stomatal conductance to nearly zero at night. Here, we test the sensitivity of carbon and water budgets in a global land-surface model, the Community Land Model (CLM) version 4.5, to three different methods of incorporating observed nighttime stomatal conductance values. We find that our modifications increase transpiration by up to 5% globally, reduce modeled available soil moisture by up to 50% in semi-arid regions, and increase the importance of the land surface in modulating energy fluxes. Carbon gain declines by up to ∼ 4% globally and > 25% in semi-arid regions. We advocate for realistic constraints of minimum stomatal conductance in future climate simulations, and widespread field observations to improve parameterizations.

Details

Title
Representing nighttime and minimum conductance in CLM4.5: global hydrology and carbon sensitivity analysis using observational constraints
Author
Lombardozzi, Danica L; Zeppel, Melanie J B; Fisher, Rosie A; Tawfik, Ahmed
Pages
321-331
Publication year
2017
Publication date
2017
Publisher
Copernicus GmbH
ISSN
1991962X
e-ISSN
19919603
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1860691031
Copyright
Copyright Copernicus GmbH 2017