Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The issues of the degradation of the visual sensor’s image quality in foggy weather and the loss of information after defogging have brought great challenges to obstacle detection during autonomous driving. Therefore, this paper proposes a method for detecting driving obstacles in foggy weather. The driving obstacle detection in foggy weather was realized by combining the GCANet defogging algorithm with the detection algorithm-based edge and convolution feature fusion training, with a full consideration of the reasonable matching between the defogging algorithm and the detection algorithm on the basis of the characteristics of obvious target edge features after GCANet defogging. Based on the YOLOv5 network, the obstacle detection model is trained using clear day images and corresponding edge feature images to realize the fusion of edge features and convolution features, and to detect driving obstacles in a foggy traffic environment. Compared with the conventional training method, the method improves the mAP by 12% and recall by 9%. In contrast to conventional detection methods, this method can better identify the image edge information after defogging, which significantly enhances detection accuracy while ensuring time efficiency. This is of great practical significance for improving the safe perception of driving obstacles under adverse weather conditions, ensuring the safety of autonomous driving.

Details

Title
Research on Driving Obstacle Detection Technology in Foggy Weather Based on GCANet and Feature Fusion Training
Author
Liu, Zhaohui 1   VIAFID ORCID Logo  ; Zhao, Shiji 2 ; Wang, Xiao 2 

 State Key Laboratory of Automotive Simulation and Control (ASCL), Changchun 130025, China; College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China 
 College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China 
First page
2822
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785234334
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.