Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To address the problems of difficult online monitoring, low recognition efficiency and the subjectivity of work condition identification in mineral flotation processes, a foam flotation performance state recognition method is developed to improve the issues mentioned above. This method combines multi-dimensional CNN (convolutional neural networks) characteristics and improved LBP (local binary patterns) characteristics. We have divided the foam flotation conditions into six categories. First, the multi-directional and multi-scale selectivity and anisotropy of nonsubsampled shearlet transform (NSST) are used to decompose the flotation foam images at multiple frequency scales, and a multi-channel CNN network is designed to extract static features from the images at different frequencies. Then, the flotation video image sequences are rotated and dynamic features are extracted by the LBP-TOP (local binary patterns from three orthogonal planes), and the CNN-extracted static picture features are fused with the LBP dynamic video features. Finally, classification decisions are made by a PSO-RVFLNs (particle swarm optimization-random vector functional link networks) algorithm to accurately identify the foam flotation performance states. Experimental results show that the detection accuracy of the new method is significantly improved by 4.97% and 6.55%, respectively, compared to the single CNN algorithm and the traditional LBP algorithm, respectively. The accuracy of flotation performance state classification was as high as 95.17%, and the method reduced manual intervention, thus improving production efficiency.

Details

Title
Research on Multi-Scale Feature Extraction and Working Condition Classification Algorithm of Lead-Zinc Ore Flotation Foam
Author
Jiang, Xiaoping 1 ; Zhao, Huilin 1 ; Liu, Junwei 1 ; Ma, Suliang 2 ; Hu, Mingzhen 3 

 School of Mechanical Electronic & Information Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China 
 Energy Storage Technology Engineering Research Center, North China University of Technology, Beijing 100144, China 
 Guangxi China Tin Group Co., Ltd., Liuzhou 545006, China 
First page
4028
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791587401
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.