Full text

Turn on search term navigation

Copyright © 2019 Yunyun Fan and Fengyuan Wu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

With the advantages of a simple structure and rapid construction, the rigid netting barrier (RNB) exerts a good obstruction effect on granular flow and is a common engineering measure used to prevent geological disasters in the form of granular flows. However, due to the limitations of current measuring and testing techniques, it is difficult to obtain an accurate measurement of the granular flow velocity and the impact force of granular flow on the mesh structures that are of primary concern in the design of protective structures. To study the characteristics of the obstruction process of RNBs toward granular flow, a typical impact experiment involving granular flow was numerically simulated by the discrete element method, and the correctness and effectiveness of the calculation method were also verified. On this basis, the discrete element method was applied to simulate the obstruction process affecting granular flow under different RNB setting conditions, and the calculation results clearly present the phenomena that occur during the obstruction process of RNBs toward granular flow, such as “run-up,” “overflow,” “passing-through,” and “grain-size segregation.” By analyzing the effects of these phenomena on the obstruction efficiency and the time history of the forces acting on the RNB, the rational setting of an RNB was further discussed. This study can provide a reference for the engineering application of RNB.

Details

Title
Research on the Obstruction Process of Rigid Netting Barriers toward Granular Flow
Author
Fan, Yunyun 1   VIAFID ORCID Logo  ; Wu, Fengyuan 2 

 Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110004, China 
 School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China 
Editor
Sanjay Nimbalkar
Publication year
2019
Publication date
2019
Publisher
John Wiley & Sons, Inc.
ISSN
16878086
e-ISSN
16878094
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2250536688
Copyright
Copyright © 2019 Yunyun Fan and Fengyuan Wu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/