Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Due to the challenges associated with the application of existing two-stage optimization methods in energy system capacity configuration, such as uncertainty scenario generation, multi-timescale coupling, and balancing economic and environmental benefits, this paper proposes a two-stage optimization configuration method based on Particle Swarm Optimization (PSO) for the capacity configuration of long-endurance hydrogen-powered hybrid unmanned aerial vehicles (UAVs). By constructing a hydrogen-powered hybrid UAV energy system model, an uncertainty model for the energy system, and multi-timescale comprehensive evaluation indicators and corresponding objective functions, the capacity configuration is determined using a two-stage stochastic programming model solved by CPLEX in MATLAB. The two-stage stochastic programming model consists of the first stage, which involves capacity optimization through PSO, and the second stage, which employs Monte Carlo method for random wind field sampling. The research provides a theoretical foundation for the application of the two-stage optimization capacity configuration method in the field of long-endurance hydrogen-powered hybrid UAVs.

Details

Title
A Capacity Allocation Method for Long-Endurance Hydrogen-Powered Hybrid UAVs Based on Two-Stage Optimization
Author
Li, Haitao 1 ; Wang, Chenyu 2 ; Yuan Shufu 2 ; Zhu, Hui 1 ; Sun, Li 2   VIAFID ORCID Logo 

 State Grid Changzhou Power Supply Company, Changzhou 213200, China; [email protected] (H.L.); 
 National Engineering Research Center of Power Generation Control and Safety, Liyang Research Institute, Southeast University, Liyang 213300, China; [email protected] (C.W.); 
First page
196
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19994893
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194484924
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.