Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Soybeans often encounter several in-season stressors that can alter retention of reproductive structures. To understand soybean response to structural losses through altered growth parameters—and, ultimately, yield—a field trial was established in Bixby, Oklahoma, in 2019 and 2020 and Perkins, Oklahoma, in 2019. Removal of reproductive structures occurred at full flower (R2), the beginning of pod development (R3), and the beginning of seed development (R5) and at three locations on the plant (top third (T), middle third (M), whole (W)). The impact of flower removal on yield at the R2 and R3 stages did not significantly differ from that in non-treated soybean. Pod removal as late as R5 from the upper fruiting positions (T) had a lesser impact on overall yield, with R5:T showing a reduction in seed number of 860 seeds plant−1, whereas R5:M was 1921 seeds plant−1 below the non-treated soybean. The middle portion of the mainstem was the location where the loss demonstrated was paramount at R5, as this region is a large sink and major contributor to yield. Late-season, stress-negating yield recovery, depending on the severity, may indicate that management practices should anticipate physiological limitations for stress, as well as the potential for relative yield recovery and yield improvement.

Details

Title
Response of Soybean Yield and Certain Growth Parameters to Simulated Reproductive Structure Removal
Author
Kezar, Sarah 1 ; Ballagh, Anna 2 ; Kankarla, Vanaja 3   VIAFID ORCID Logo  ; Sharma, Sumit 2 ; Raedan Sharry 2 ; Lofton, Josh 2   VIAFID ORCID Logo 

 Department of Soil and Crop Science, Texas A&M University, College Station, TX 77843, USA 
 Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA 
 Department of Marine and Earth Science, Florida Gulf Coast University, Fort Myers, FL 33965, USA 
First page
927
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791558735
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.