Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Understory vegetation affects the richness and stability of urban forest ecosystems. To investigate the influence of soil physicochemical properties on the diversity of understory plants in urban forests, this study used 30 urban forest communities in the Beijing Plain area as the research object and analyzed the correlation between understory plant diversity and soil factors by correlation analysis. Furthermore, pH, soil bulk density (SBD), total soil porosity (TSP), soil water content (SWC), soil organic carbon (SOC), soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), effective phosphorous (AP), and effective potassium (AK) were determined in this study. The Shannon diversity index (H’), Pielou evenness index (E), Simpson dominance index (C), and Margalef richness index (DMG) of understory plants were calculated. The soil nutrient contents and the understory plant diversity indices of the different community types showed significant differences. There was a strong correlation between soil properties and the diversity index of understory vegetation. SOM and SOC were the main factors affecting the Shannon-Wiener index, Pielou index, Simpson index, and Margalef richness index of the understory plants. We conclude that soil properties were one of the primary drivers of the formation of understory vegetation diversity. The results of the study can provide scientific guidance for the management of urban forests.

Details

Title
Response of Understory Plant Diversity to Soil Physical and Chemical Properties in Urban Forests in Beijing, China
Author
Meng, Xiangyu 1 ; Fan, Shunxin 1 ; Li, Dong 1 ; Li, Kun 1 ; Li, Xiaolu 1 

 School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Laboratory of Beijing Urban and Rural Ecological Environment, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China 
First page
571
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791646977
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.