Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A tremendous input of ammonium and rare earth elements (REEs) has entered the surroundings on account of the discharge and leak of leaching agents during rare earth in-suit leaching mining, which has threatened various organisms. Anammox has the potential to release nitrogen contamination, but the potential impacts of REEs on anammox bacteria remain unclear. In this study, La (III) was chosen as a case to explore the long-term impacts on anammox granular sludge. The 5 mg L−1 La (III) which was examined hardly affected the anammox granulates because of the defense of extracellular polymeric substances. The high La concentrations (10–50 mg L−1) caused intercellular accumulation and the significant inhibition of nitrogen removal performance and dehydrogenase activity, especially a decrease in the relative abundance of Ca. Kuenenia. Moreover, it also induced patently oxidative damage and affected cell membrane integrity. Notably, extracellular polymeric substances have a limited defense capability; neither La3+ nor Ca2+/Mg2+ efflux-related genes aggravated the intracellular accumulation of La.

Details

Title
Responses of Anammox Granular Sludge to Long-Term Rare Earth Element Feeding: Lanthanum as a Case
Author
Huang, Shuanglei 1 ; Wu, Daishe 1 

 School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China; [email protected]; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China 
First page
7887
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548851683
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.