Content area
Full Text
Brain Struct Funct (2015) 220:351360 DOI 10.1007/s00429-013-0659-7
ORIGINAL ARTICLE
Retrograde transneuronal degeneration in the retina and lateral geniculate nucleus of the V1-lesioned marmoset monkey
A. Hendrickson C. E. Warner D. Possin
J. Huang W. C. Kwan J. A. Bourne
Received: 26 June 2013 / Accepted: 15 October 2013 / Published online: 31 October 2013 Springer-Verlag Berlin Heidelberg 2013
Abstract Retrograde transneuronal degeneration (RTD) of retinal ganglion cells and dorsal lateral geniculate (LGN) neurons are well described following a lesion of the primary visual cortex (V1) in both Old World monkeys and humans. Based on previous studies of New World monkeys and prosimians, it was suggested that these species displayed no RTD following a lesion of V1. In this study of the New World marmoset monkey, 1 year after a unilateral V1 lesion either in adults or at 14 days after birth, we observed *20 % ganglion cell (GC) loss in adult but *70 % in infants. This nding is similar to the RTD previously described for Old World Macaca monkeys.
Furthermore, in infants we nd a similar amount of RTD at 3 weeks and 1 year following lesion, demonstrating that RTD is very rapid in neonates. This highlights the importance of trying to prevent the rapid onset of RTD following a lesion of V1 in early life as a strategy for improved functional recovery. Despite differences in GC loss, there was little difference between LGN degeneration in infant versus adult lesions. A wedge on the horizontal meridian corresponding to the LGN foveal representation revealed extensive neuronal loss. Retinal afferent input was labeled by cholera toxin B subunit. Input to the degenerated parvocellular layers was difcult to detect, while input to magnocellular and koniocellular layers was reduced but still apparent. Our demonstration that the New World
marmoset monkey shares many of the features of neuro-plasticity with Old World Macaca monkeys and humans emphasizes the opportunity and benet of marmosets as models of visual cortical injury.
Keywords Primate Hemianopia Visual system
Cortical blindness Stroke
Introduction
Retrograde transneuronal degeneration (RTD) is the loss of a neuronal population two or more synapses upstream from a lesion, toward the sensory organ. The best example of RTD follows a lesion of primary visual cortex (V1) and has been recognized for decades...