Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Titanium alloys are useful for application in orthopedic implants. However, complications, such as prosthetic infections and aseptic loosening, often occur after orthopedic devices are implanted. Therefore, innovation in surface modification techniques is essential to develop orthopedic materials with optimal properties at the biomaterial–bone interface. In this review, we present recent research on the improvement in the osteoconductivity and antibacterial effect of the Ti-33.6% Nb-4% Sn (TiNbSn) alloy by anodic oxidation and other related studies. TiNbSn alloys are excellent new titanium alloys with a low Young’s modulus, high tensile strength, and with gradient functional properties such as a thermally adjustable Young’s modulus and strength. Titanium dioxide (TiO2), when obtained by the anodic oxidation of a TiNbSn alloy, improves bone affinity and provides antibacterial performance owing to its photocatalytic activity. The safety of TiO2 and its strong bonding with metal materials make its method of preparation a promising alternative to conventional methods for improving the surface quality of orthopedic implants. Implementing anodization technology for TiNbSn alloys may alleviate orthopedic surgery-related complications, such as loosening, stress shielding, and infection after arthroplasty.

Details

Title
A Review of Anodized TiNbSn Alloys for Improvement in Layer Quality and Application to Orthopedic Implants
Author
Mori, Yu 1   VIAFID ORCID Logo  ; Masahashi, Naoya 2 ; Aizawa, Toshimi 1   VIAFID ORCID Logo 

 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; [email protected] 
 Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan; [email protected] 
First page
5116
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700740495
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.