Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The utilization of small unmanned aerial vehicles (SUAVs), commonly known as drones, has increased drastically in various industries in the past decade. Commercial drones face challenges in terms of safety, durability, flight performance, and environmental effects such as the risk of collision and damage. Biomimetics, which is inspired by the sophisticated flying mechanisms in aerial animals, characterized by robustness and intelligence in aerodynamic performance, flight stability, and low environmental impact, may provide feasible solutions and innovativeness to drone design. In this paper, we review the recent advances in biomimetic approaches for drone development. The studies were extracted from several databases and we categorized the challenges by their purposes—namely, flight stability, flight efficiency, collision avoidance, damage mitigation, and grasping during flight. Furthermore, for each category, we summarized the achievements of current biomimetic systems and then identified their limitations. We also discuss future tasks on the research and development associated with biomimetic drones in terms of innovative design, flight control technologies, and biodiversity conservation. This paper can be used to explore new possibilities for developing biomimetic drones in industry and as a reference for necessary policy making.

Details

Title
Review of Biomimetic Approaches for Drones
Author
Tanaka, Saori 1   VIAFID ORCID Logo  ; Asignacion, Abner 2 ; Nakata, Toshiyuki 2 ; Suzuki, Satoshi 2   VIAFID ORCID Logo  ; Liu, Hao 2   VIAFID ORCID Logo 

 Center for Aerial Intelligent Vehicles, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan 
 Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan 
First page
320
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2504446X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734621919
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.