Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The importance of the low-temperature selective catalytic reduction (LT-SCR) of NOx by NH3 is increasing due to the recent severe pollution regulations being imposed around the world. Supported and mixed transition metal oxides have been widely investigated for LT-SCR technology. However, these catalytic materials have some drawbacks, especially in terms of catalyst poisoning by H2O or/and SO2. Hence, the development of catalysts for the LT-SCR process is still under active investigation throughout seeking better performance. Extensive research efforts have been made to develop new advanced materials for this technology. This article critically reviews the recent research progress on supported transition and mixed transition metal oxide catalysts for the LT-SCR reaction. The review covered the description of the influence of operating conditions and promoters on the LT-SCR performance. The reaction mechanism, reaction intermediates, and active sites are also discussed in detail using isotopic labelling and in situ FT-IR studies.

Details

Title
A Review of Low Temperature NH3-SCR for Removal of NOx
Author
Devaiah Damma 1   VIAFID ORCID Logo  ; Ettireddy, Padmanabha R 2 ; Reddy, Benjaram M 3   VIAFID ORCID Logo  ; Smirniotis, Panagiotis G 1 

 Chemical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221-0012, USA 
 Cummins Inc., Columbus, IN 47201, USA 
 Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Hyderabad, Telangana 500007, India 
First page
349
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2547624130
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.