Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Renewable energy resources are gaining a lot of popularity. Several researchers have worked on the tracking and extraction of energy from these sources. In the past few decades, among the available green energy resources, wind energy has been the most attractive option among the resources available. It is imperative to use the maximum power available in the wind to achieve the wind turbine (WT) operation at maximum power. The maximum power point tracking (MPPT) algorithms are a pioneer in this context. Many research papers are contributed in this domain which necessitates a thorough review while choosing an appropriate technique. This paper comprehensively focuses on reviewing different algorithms in the past and present for tracking maximum power point, and capturing maximized output power from the wind energy conversion system (WECS). In this paper, the algorithms are classified based on the direct and indirect power measurement, hybrid and smart algorithms for tracking maximum power point, and they are compared, considering the parameters like complexity, convergence speed, use of sensors, memory requirement, need for knowledge of system parameters, etc. The immense popularity of the different versions of perturb and observe (P&O) based algorithms due to their various features is evident from the literature. The review reveals that the hybrid maximum power point tracking algorithms can use the advantages of the conventional methods and eliminate their drawbacks.

Details

Title
A Review of Maximum Power Point Tracking Algorithms for Wind Energy Conversion Systems
Author
Pande, Jayshree 1   VIAFID ORCID Logo  ; Nasikkar, Paresh 1 ; Kotecha, Ketan 2   VIAFID ORCID Logo  ; Varadarajan, Vijayakumar 3 

 Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, Maharashtra, India; [email protected] 
 Symbiosis Centre for Applied Artificial Intelligence, Symbiosis International (Deemed University), Pune 412115, Maharashtra, India; [email protected] 
 School of Computer Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia 
First page
1187
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2602099282
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.