Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

New energy vehicles (NEVs), especially electric vehicles (EVs), address the important task of reducing the greenhouse effect. It is particularly important to measure the environmental efficiency of new energy vehicles, and the life cycle analysis (LCA) model provides a comprehensive evaluation method of environmental efficiency. To provide researchers with knowledge regarding the research trends of LCA in NEVs, a total of 282 related studies were counted from the Web of Science database and analyzed regarding their research contents, research preferences, and research trends. The conclusion drawn from this research is that the stages of energy resource extraction and collection, carrier production and energy transportation, maintenance, and replacement are not considered to be research links. The stages of material, equipment, and car transportation and operation equipment settling, and forms of use need to be considered in future research. Hydrogen fuel cell electric vehicles (HFCEVs), vehicle type classification, the water footprint, battery recovery and reuse, and battery aging are the focus of further research, and comprehensive evaluation combined with more evaluation methods is the direction needed for the optimization of LCA. According to the results of this study regarding EV and hybrid power vehicles (including plug-in hybrid electric vehicles (PHEV), fuel-cell electric vehicles (FCEV), hybrid electric vehicles (HEV), and extended range electric vehicles (EREV)), well-to-wheel (WTW) average carbon dioxide (CO2) emissions have been less than those in the same period of gasoline internal combustion engine vehicles (GICEV). However, EV and hybrid electric vehicle production CO2 emissions have been greater than those during the same period of GICEV and the total CO2 emissions of EV have been less than during the same period of GICEV.

Details

Title
A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis
Author
Wang, Nenming 1 ; Tang, Guwen 1 

 School of Management, Xi’an Jiaotong University, No. 28 Xianning Road, Xi’an 710049, China; [email protected]; The Key Lab of the Ministry of Education for Process Control & Efficiency Engineering, No. 28 Xianning Road, Xi’an 710049, China; ERC for Process Mining of Manufacturing Services in Shaanxi Province, No. 28 Xianning Road, Xi’an 710049, China 
First page
3371
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642630772
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.