Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, the foreign exchange (FOREX) market has attracted quite a lot of scrutiny from researchers all over the world. Due to its vulnerable characteristics, different types of research have been conducted to accomplish the task of predicting future FOREX currency prices accurately. In this research, we present a comprehensive review of the recent advancements of FOREX currency prediction approaches. Besides, we provide some information about the FOREX market and cryptocurrency market. We wanted to analyze the most recent works in this field and therefore considered only those papers which were published from 2017 to 2019. We used a keyword-based searching technique to filter out popular and relevant research. Moreover, we have applied a selection algorithm to determine which papers to include in this review. Based on our selection criteria, we have reviewed 39 research articles that were published on “Elsevier”, “Springer”, and “IEEE Xplore” that predicted future FOREX prices within the stipulated time. Our research shows that in recent years, researchers have been interested mostly in neural networks models, pattern-based approaches, and optimization techniques. Our review also shows that many deep learning algorithms, such as gated recurrent unit (GRU) and long short term memory (LSTM), have been fully explored and show huge potential in time series prediction.

Details

Title
A Review on Recent Advancements in FOREX Currency Prediction
Author
Md Saiful Islam  VIAFID ORCID Logo  ; Hossain, Emam  VIAFID ORCID Logo  ; Rahman, Abdur  VIAFID ORCID Logo  ; Hossain, Mohammad Shahadat; Andersson, Karl  VIAFID ORCID Logo 
First page
186
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19994893
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2430242031
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.