Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Federated learning (FL) provides a distributed machine learning system that enables participants to train using local data to create a shared model by eliminating the requirement of data sharing. In healthcare systems, FL allows Medical Internet of Things (MIoT) devices and electronic health records (EHRs) to be trained locally without sending patients data to the central server. This allows healthcare decisions and diagnoses based on datasets from all participants, as well as streamlining other healthcare processes. In terms of user data privacy, this technology allows collaborative training without the need of sharing the local data with the central server. However, there are privacy challenges in FL arising from the fact that the model updates are shared between the client and the server which can be used for re-generating the client’s data, breaching privacy requirements of applications in domains like healthcare. In this paper, we have conducted a review of the literature to analyse the existing privacy and security enhancement methods proposed for FL in healthcare systems. It has been identified that the research in the domain focuses on seven techniques: Differential Privacy, Homomorphic Encryption, Blockchain, Hierarchical Approaches, Peer to Peer Sharing, Intelligence on the Edge Device, and Mixed, Hybrid and Miscellaneous Approaches. The strengths, limitations, and trade-offs of each technique were discussed, and the possible future for these seven privacy enhancement techniques for healthcare FL systems was identified.

Details

Title
A Review of Privacy Enhancement Methods for Federated Learning in Healthcare Systems
Author
Gu, Xin 1 ; Fariza Sabrina 2 ; Fan, Zongwen 3   VIAFID ORCID Logo  ; Shaleeza Sohail 4 

 School of Information Technology, King’s Own Institute, Sydney, NSW 2000, Australia; [email protected] 
 School of Engineering and Technology, Central Queensland University, Sydney, NSW 2000, Australia; [email protected] 
 College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China 
 College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; [email protected] 
First page
6539
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2848989549
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.