Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The sustainable provision of mankind with energy and mineral raw materials is associated with an increase not only in industrial but also in the ecological and economic development of the raw material sector. Expanding demand for energy, metals, building and chemical raw materials on the one hand, and the deterioration of the living environment along with a growth of raw materials extraction on the other, put the human-centric development of mining at the forefront. This forms a transition trend from Mining 4.0 technologies such as artificial intelligence, big data, smart sensors and robots, machine vision, etc., to Mining 5.0, presented with collaborative robots and deserted enterprises, bioextraction of useful minerals, postmining, and revitalization of mining areas. This “bridge” is formed by the technological convergence of information, cognitive, and biochemical technologies with traditional geotechnology, which should radically change the role of the resource sector in the economy and society of the 21st century. The transition from Mining 3.0 to 4.0 cannot be considered complete. However, at the same time, the foundation is already being laid for the transition to Mining 5.0, inspired, on the one hand, by an unprecedented gain in productivity, labor safety, and predictability of commodity markets, on the other hand, by the upcoming onset of Industry 5.0. This review provides a multilateral observation of the conditions, processes, and features of the current transition to Mining 4.0 and the upcoming transformation on the Mining 5.0 platform, highlighting its core and prospects for replacing humans with collaborated robots and artificial intelligence. In addition, the main limitations of the transition to Mining 5.0 are discussed, the overcoming of which is associated with the development of green mining and ESG (environment, social, and governance) investment.

Details

Title
Review of Transition from Mining 4.0 to Mining 5.0 Innovative Technologies
Author
Zhironkin, Sergey 1   VIAFID ORCID Logo  ; Ezdina, Natalya 2 

 School of Engineering Entrepreneurship, National Research Tomsk Polytechnic University, 30 Lenina St., 634050 Tomsk, Russia 
 Department of Political Economy and History of Economic Science, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia; [email protected] 
First page
4917
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806476968
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.