It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Knearest neighbors (kNN) is a lazylearning method for classification and regression that has been successfully applied to several application domains. It is simple and directly applicable to multiclass problems however it suffers a high complexity in terms of both memory and computations. Several research studies try to scale the kNN method to very large datasets using crisp partitioning. In this paper, we propose to integrate the principles of rough sets and fuzzy sets while conducting a clustering algorithm to separate the whole dataset into several parts, each of which is then conducted kNN classification. The concept of crisp lower bound and fuzzy boundary of a cluster which is applied to the proposed algorithm allows accurate selection of the set of data points to be involved in classifying an unseen data point. The data points to be used are a mix of core and border data points of the clusters created in the training phase. The experimental results on standard datasets show that the proposed kNN classification is more effective than related recent work with a slight increase in classification time.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer