Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study conducted an extensive literature review on rice husk ash (RHA), with a focus on its particle properties and their effects on the fresh, mechanical, and durability properties of concrete when used as a partial cement replacement. The pozzolanic property of RHA is determined by its amorphous silica content, specific surface area, and particle fineness, which can be improved by using controlled combustion and grinding for use in concrete. RHA particle microstructures are typically irregular in shape, with porous structures on the surface, non-uniform in dispersion, and discrete throughout. Because RHA has a finer particle size than cement, the RHA blended cement concrete performs well in terms of fresh properties (workability, consistency, and setting time). Due to the involvement of amorphous silica reactions, the mechanical properties (compressive, tensile, and flexural strength) of RHA-containing concrete increase with increasing RHA content up to a certain optimum level. Furthermore, the use of RHA improved the durability properties of concrete (water absorption, chloride resistance, corrosion resistance, and sulphate resistance). RHA has the potential to replace cement by up to 10% to 20% without compromising the concrete performance due to its high pozzolanic properties. The use of RHA as a partial cement replacement in concrete can thus provide additional environmental benefits, such as resource conservation and agricultural waste management, while also contributing to a circular economy in the construction industry.

Details

Title
Rice Husk Ash in Concrete
Author
Solomon, Asrat Endale 1   VIAFID ORCID Logo  ; Woubishet, Zewdu Taffese 2   VIAFID ORCID Logo  ; Duy-Hai Vo 3 ; Mitiku Damtie Yehualaw 1   VIAFID ORCID Logo 

 Faculty of Civil and Water Resource Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar P.O. Box 79, Ethiopia 
 School of Research and Graduate Studies, Arcada University of Applied Sciences, Jan-Magnus Jansson Aukio 1, 00560 Helsinki, Finland 
 Department of Civil Engineering, University of Technology and Education, The University of Danang, 48 Cao Thang Street, Hai Chau District, Da Nang 550000, Vietnam 
First page
137
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761213865
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.