Abstract

Autonomous systems typically actively observe certain aspects of their surroundings, which makes them dependent on a suitable controller. However, building an attitude controller for three degrees of freedom is a challenging task, mainly due to singularities in the different parametrizations of the three dimensional rotation group SO(3). Thus, we propose an attitude controller based on a manifold representation of direction cosine matrices: In state space, the attitude is globally and uniquely represented as a direction cosine matrix RSO(3). However, differences in the state space, i.e., the attitude errors, are exposed to the controller in the vector space ℝ3. This is achieved by an operator, which integrates the matrix logarithm mapping from SO(3) to so(3) and the map from so(3) to ℝ3. Based on this representation, we derive a proportional and derivative feedback controller, whose output has an upper bound to prevent actuator saturation. Additionally, the feedback is preprocessed by a particle filter to account for measurement and state transition noise. We evaluate our approach in a simulator in three different spacecraft maneuver scenarios: (i) stabilizing, (ii) rest-to-rest, and (iii) nadir-pointing. The controller exhibits stable behavior from initial attitudes near and far from the setpoint. Furthermore, it is able to stabilize a spacecraft and can be used for nadir-pointing maneuvers.

Details

Title
Rigid Body Attitude Control Based on a Manifold Representation of Direction Cosine Matrices
Author
Nakath, David 1 ; Clemens, Joachim 1 ; Rachuy, Carsten 1 

 Cognitive Neuroinformatics, University of Bremen, Enrique-Schmidt-Str. 5, 28359 Bremen, Germany 
Publication year
2017
Publication date
Jan 2017
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2573699382
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.