It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper investigates a convex optimization approach to the problem of robust H-Infinity filtering for uncertain linear systems connected over a common digital communication network. We consider the case where quantizers are static and the parameter uncertainties are norm bounded. Firstly, we propose a new model to investigate the effect of both the output quantization levels and the network conditions. Secondly, by introducing a descriptor technique, using Lyapunov-Krasovskii functional and a suitable change of variables, new required sufficient conditions are established in terms of delay-dependent linear matrix inequalities (LMIs) for the existence of the desired network-based quantized filters with simultaneous consideration of network induced delays and measurement quantization. The explicit expression of the filters is derived to satisfy both asymptotic stability and a prescribed level of disturbance attenuation for all admissible norm bounded uncertainties.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer