Full Text

Turn on search term navigation

© 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In practical encephalogram (EEG) based machine learning, different subjects can be represented by many different EEG patterns, which would in some extent degrade the performance of extant subject-independent classifiers obtained from cross-subjects datasets. To this end, in this paper, we present a robust Latent Multi-source Adaptation (LMA) framework for cross-subject/dataset emotion recognition with EEG signals by uncovering multiple domain-invariant latent subspaces. Specifically, by jointly aligning the statistical and semantic distribution discrepancies between each source and target pair, multiple domain-invariant classifiers can be trained collaboratively in a unified framework. This framework can fully utilize the correlated knowledge among multiple sources with a novel low-rank regularization term. Comprehensive experiments on DEAP and SEED datasets demonstrates the superior or comparable performance of LMA with the state-of-the-art in the EEG-based emotion recognition.

Details

Title
Robust Latent Multi-Source Adaptation for Encephalogram-Based Emotion Recognition
Author
Tao, Jianwen; Dan, Yufang; Zhou, Di; He, Songsong
Section
ORIGINAL RESEARCH article
Publication year
2022
Publication date
Apr 27, 2022
Publisher
Frontiers Research Foundation
ISSN
16624548
e-ISSN
1662453X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2655918601
Copyright
© 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.