Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Multiple object tracking (MOT) from unmanned aerial vehicle (UAV) videos has faced several challenges such as motion capture and appearance, clustering, object variation, high altitudes, and abrupt motion. Consequently, the volume of objects captured by the UAV is usually quite small, and the target object appearance information is not always reliable. To solve these issues, a new technique is presented to track objects based on a deep learning technique that attains state-of-the-art performance on standard datasets, such as Stanford Drone and Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking (UAVDT) datasets. The proposed faster RCNN (region-based convolutional neural network) framework was enhanced by integrating a series of activities, including the proper calibration of key parameters, multi-scale training, hard negative mining, and feature collection to improve the region-based CNN baseline. Furthermore, a deep quadruplet network (DQN) was applied to track the movement of the captured objects from the crowded environment, and it was modelled to utilize new quadruplet loss function in order to study the feature space. A deep 6 Rectified linear units (ReLU) convolution was used in the faster RCNN to mine spatial–spectral features. The experimental results on the standard datasets demonstrated a high performance accuracy. Thus, the proposed method can be used to detect multiple objects and track their trajectories with a high accuracy.

Details

Title
A Robust Quadruplet and Faster Region-Based CNN for UAV Video-Based Multiple Object Tracking in Crowded Environment
Author
Happiness Ugochi Dike  VIAFID ORCID Logo 
First page
795
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548418223
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.