Full Text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Permanent magnet synchronous motors (PMSMs) are known as highly efficient motors and are slowly replacing induction motors in diverse industries. PMSM systems are nonlinear and consist of time-varying parameters with high-order complex dynamics. High performance applications of PMSMs require their speed controllers to provide a fast response, precise tracking, small overshoot and strong disturbance rejection ability. Sliding mode control (SMC) is well known as a robust control method for systems with parameter variations and external disturbances. This paper investigates the current status of implementation of sliding mode control speed control of PMSMs. Our aim is to highlight various designs of sliding surface and composite controller designs with SMC implementation, which purpose is to improve controller’s robustness and/or to reduce SMC chattering. SMC enhancement using fractional order sliding surface design is elaborated and verified by simulation results presented. Remarkable features as well as disadvantages of previous works are summarized. Ideas on possible future works are also discussed, which emphasize on current gaps in this area of research.

Details

Title
Robust Speed Control of PMSM Using Sliding Mode Control (SMC)—A Review
Author
Fardila Mohd Zaihidee; Mekhilef, Saad  VIAFID ORCID Logo  ; Mubin, Marizan
First page
1669
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2403216035
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.