Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We examined the relationship between the intrinsic structure of a carbocatalyst and catalytic activity of peroxomonosulfate (PMS) activation for acetaminophen degradation. A series of nitrogen-doped carbon nanotubes with different degrees of oxidation was synthesized by the unzipping method. The linear regression analysis proposes that pyridinic N and graphitic N played a key role in the catalytic oxidation, rather than pyrrolic N and oxidized N. Pyridinic N reinforce the electron population in the graphitic framework and initiate the non-radical pathway via the formation of surface-bound radicals. Furthermore, graphitic N forms activated complexes (carbocatalyst-PMS*), facilitating the electron-transfer oxidative pathway. The correlation also affirms that -C=O was dominantly involved as a main active site, rather than -C-OH and -COOH. This study can be viewed as the first attempt to demonstrate the relationship between the fraction of N-groups and activity, and the quantity of O-groups and activity by active species (quenching studies) was established to reveal the role of N-groups and O-groups in the radical and non-radical pathways.

Details

Title
Role of N-Doping and O-Groups in Unzipped N-Doped CNT Carbocatalyst for Peroxomonosulfate Activation: Quantitative Structure–Activity Relationship
Author
Govindan, Kadarkarai 1   VIAFID ORCID Logo  ; Do-Gun, Kim 2   VIAFID ORCID Logo  ; Seok-Oh, Ko 1 

 Environmental System Laboratory, Department of Civil Engineering, Kyung University (Global Campus), Giheung-Gu, Yongin-Si 16705, Korea; [email protected] 
 Department of Environmental Engineering, Sunchon National University, 255 Jungang-ro, Suncheon-Si 57922, Korea; [email protected] 
First page
845
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706128503
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.