Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The present study investigated the role of salicylic acid (SA) in regulating morpho-anatomical adaptive responses of a wheat plant to waterlogging. Our pharmacological study showed that treatment of waterlogged wheat plants with exogenous SA promotes the formation axile roots and surface adventitious roots that originate from basal stem nodes, but inhibits their elongation, leading to the formation of a shallow root system. The treatment also enhanced axile root formation in non-waterlogged plants but with only slight reductions in their length and branch root formation. Exogenous SA enhanced the formation of root aerenchyma, a key anatomical adaptive response of plants to waterlogging. Consistent with these results, waterlogging enhanced SA content in the root via expression of specific isochorismate synthase (ICS; ICS1 and ICS2) and phenylalanine ammonia lyase (PAL; PAL4, PAL5 and PAL6) genes and in the stem nodes via expression of specific PAL (PAL5 and PAL6) genes. Although not to the same level observed in waterlogged plants, exogenous SA also induced aerenchyma formation in non-waterlogged plants. The findings of this study furthermore indicated that inhibition of ethylene synthesis in SA treated non-waterlogged and waterlogged plants does not have any effect on SA-induced emergence of axile and/or surface adventitious roots but represses SA-mediated induction of aerenchyma formation. These results highlight that the role of SA in promoting the development of axile and surface adventitious roots in waterlogged wheat plants is ethylene independent while the induction of aerenchyma formation by SA requires the presence of ethylene.

Details

Title
Salicylic Acid Enhances Adventitious Root and Aerenchyma Formation in Wheat under Waterlogged Conditions
Author
Koramutla, Murali Krishna; Pham, Anh Tuan; Ayele, Belay T  VIAFID ORCID Logo 
First page
1243
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627609786
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.