Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Gut microbiomes of fish species consist of thousands of bacterial taxa that interact among each other, their environment, and the host. These complex networks of interactions are regulated by a diverse range of factors, yet little is known about the hierarchy of these interactions. Here, we introduce SAMBA (Structure-Learning of Aquaculture Microbiomes using a Bayesian Approach), a computational tool that uses a unified Bayesian network approach to model the network structure of fish gut microbiomes and their interactions with biotic and abiotic variables associated with typical aquaculture systems. SAMBA accepts input data on microbial abundance from 16S rRNA amplicons as well as continuous and categorical information from distinct farming conditions. From this, SAMBA can create and train a network model scenario that can be used to (i) infer information of how specific farming conditions influence the diversity of the gut microbiome or pan-microbiome, and (ii) predict how the diversity and functional profile of that microbiome would change under other variable conditions. SAMBA also allows the user to visualize, manage, edit, and export the acyclic graph of the modelled network. Our study presents examples and test results of Bayesian network scenarios created by SAMBA using data from a microbial synthetic community, and the pan-microbiome of gilthead sea bream (Sparus aurata) in different feeding trials. It is worth noting that the usage of SAMBA is not limited to aquaculture systems as it can be used for modelling microbiome–host network relationships of any vertebrate organism, including humans, in any system and/or ecosystem.

Details

Title
SAMBA: Structure-Learning of Aquaculture Microbiomes Using a Bayesian Approach
Author
Soriano, Beatriz 1 ; Hafez, Ahmed Ibrahem 2   VIAFID ORCID Logo  ; Naya-Català, Fernando 3   VIAFID ORCID Logo  ; Moroni, Federico 3   VIAFID ORCID Logo  ; Moldovan, Roxana Andreea 4   VIAFID ORCID Logo  ; Toxqui-Rodríguez, Socorro 3   VIAFID ORCID Logo  ; Piazzon, María Carla 3   VIAFID ORCID Logo  ; Arnau, Vicente 5   VIAFID ORCID Logo  ; Llorens, Carlos 2   VIAFID ORCID Logo  ; Pérez-Sánchez, Jaume 3   VIAFID ORCID Logo 

 Institute of Aquaculture Torre de la Sal (IATS), Consejo Superior de Investigaciones Científicas (CSIC), 12595 Ribera de Cabanes, Spain; [email protected] (F.N.-C.); [email protected] (F.M.); [email protected] (S.T.-R.); [email protected] (M.C.P.); Biotechvana, Parc Científic Universitat de València, 46980 Paterna, Spain; [email protected] (A.I.H.); [email protected] (R.A.M.); [email protected] (C.L.); Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia and CSIC (UVEG-CSIC), 46980 Paterna, Spain; [email protected] 
 Biotechvana, Parc Científic Universitat de València, 46980 Paterna, Spain; [email protected] (A.I.H.); [email protected] (R.A.M.); [email protected] (C.L.) 
 Institute of Aquaculture Torre de la Sal (IATS), Consejo Superior de Investigaciones Científicas (CSIC), 12595 Ribera de Cabanes, Spain; [email protected] (F.N.-C.); [email protected] (F.M.); [email protected] (S.T.-R.); [email protected] (M.C.P.) 
 Biotechvana, Parc Científic Universitat de València, 46980 Paterna, Spain; [email protected] (A.I.H.); [email protected] (R.A.M.); [email protected] (C.L.); Health Research Institute INCLIVA, 46010 Valencia, Spain; Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain 
 Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia and CSIC (UVEG-CSIC), 46980 Paterna, Spain; [email protected]; Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), 46020 Valencia, Spain 
First page
1650
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734425
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2857072939
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.