Full Text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the launch of space-borne satellites, more synthetic aperture radar (SAR) images are available than ever before, thus making dynamic ship monitoring possible. Object detectors in deep learning achieve top performance, benefitting from a free public dataset. Unfortunately, due to the lack of a large volume of labeled datasets, object detectors for SAR ship detection have developed slowly. To boost the development of object detectors in SAR images, a SAR dataset is constructed. This dataset labeled by SAR experts was created using 102 Chinese Gaofen-3 images and 108 Sentinel-1 images. It consists of 43,819 ship chips of 256 pixels in both range and azimuth. These ships mainly have distinct scales and backgrounds. Moreover, modified state-of-the-art object detectors from natural images are trained and can be used as baselines. Experimental results reveal that object detectors achieve higher mean average precision (mAP) on the test dataset and have high generalization performance on new SAR imagery without land-ocean segmentation, demonstrating the benefits of the dataset we constructed.

Details

Title
A SAR Dataset of Ship Detection for Deep Learning under Complex Backgrounds
Author
Wang, Yuanyuan; Wang, Chao; Zhang, Hong; Dong, Yingbo; Wei, Sisi
Publication year
2019
Publication date
Jan 2019
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2304021107
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.