Full Text

Turn on search term navigation

Copyright © 2008 Gonzalo Riera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The classical Schwarz-Christoffel formula gives conformal mappings of the upper half-plane onto domains whose boundaries consist of a finite number of line segments. In this paper, we explore extensions to boundary curves which in one sense or another are made up of infinitely many line segments, with specific attention to the "infinite staircase" and to the Koch snowflake, for both of which we develop explicit formulas for the mapping function and explain how one can use standard mathematical software to generate corresponding graphics. We also discuss a number of open questions suggested by these considerations, some of which are related to differentials on hyperelliptic surfaces of infinite genus.

Details

Title
The Schwarz-Christoffel Conformal Mapping for "Polygons" with Infinitely Many Sides
Author
Riera, Gonzalo; Carrasco, Hernán; Preiss, Rubén
Publication year
2008
Publication date
2008
Publisher
John Wiley & Sons, Inc.
ISSN
01611712
e-ISSN
16870425
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
857136094
Copyright
Copyright © 2008 Gonzalo Riera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.