Abstract

We study a new model of Energy-Momentum Squared Gravity (EMSG), called Energy-Momentum Log Gravity (EMLG), constructed by the addition of the term \[f(T_{\mu \nu }T^{\mu \nu })=\alpha \ln (\lambda \,T_{\mu \nu }T^{\mu \nu })\], envisaged as a correction, to the Einstein–Hilbert action with cosmological constant \[\Lambda \]. The choice of this modification is made as a specific way of including new terms in the right-hand side of the Einstein field equations, resulting in constant effective inertial mass density and, importantly, leading to an explicit exact solution of the matter energy density in terms of redshift. We look for viable cosmologies, in particular, an extension of the standard \[\Lambda \]CDM model. EMLG provides an effective dynamical dark energy passing below zero at large redshifts, accommodating a mechanism for screening \[\Lambda \] in this region, in line with suggestions for alleviating some of the tensions that arise between observational data sets within the standard \[\Lambda \]CDM model. We present a detailed theoretical investigation of the model and then constrain the free parameter \[\alpha '\], a normalisation of \[\alpha \], using the latest observational data. The data does not rule out the \[\Lambda \]CDM limit of our model (\[\alpha '= 0\]), but prefers slightly negative values of the EMLG model parameter (\[\alpha '= -0.032\pm 0.043\]), which leads to the screening of \[\Lambda \]. We also discuss how EMLG relaxes the persistent tension that appears in the measurements of \[H_0\] within the standard \[\Lambda \]CDM model.

Details

Title
Screening \[\Lambda \] in a new modified gravity model
Author
Akarsu, Özgür 1   VIAFID ORCID Logo  ; Barrow, John D 2 ; Board, Charles V R 2 ; Uzun, N Merve 3 ; Vazquez, J Alberto 4 

 Department of Physics, Istanbul Technical University, Istanbul, Turkey 
 DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK 
 Department of Physics, Boğaziçi University, Istanbul, Turkey 
 Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico 
Pages
1-18
Publication year
2019
Publication date
Oct 2019
Publisher
Springer Nature B.V.
ISSN
14346044
e-ISSN
14346052
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2305407566
Copyright
The European Physical Journal C is a copyright of Springer, (2019). All Rights Reserved., © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.